大模型的优缺点
问题
- 产生误导性的 “幻觉”:
- 依赖的信息可能过时:
- 处理特定知识时效率不高:
- 缺乏专业领域的深度洞察:
- 缺少上下文:预训练LLM可能对于你应用程序中重要文件一无所知,例如针对某系列产品进行技术咨询的聊天机器人。如果这些产品的使用手册并未包含在LLM的训练数据中,那么它的准确性可能会受到影响。
- 专业词汇:某些领域、行业甚至特定企业通常具有独特的术语、概念和结构,而这些在一般预训练数据中并未得到充分体现。因此,预训练的LLM可能会在对财务数据、医学研究论文甚至公司会议记录进行总结或回答问题时面临挑战。
- 在推理能力上也有所欠缺:
- 定制输出:你可能需要一个具有独特结构或风格的应用程序,例如可以评分并提供简洁反馈点评文章质量的工具。